Fifth Semester B.Sc. Degree Examination, October/November 2019

(CBCS Scheme)

Chemistry

Paper VI (5.2) — PHYSICAL CHEMISTRY

Time: 3 Hours]

Max. Marks: 90

Instructions to the Candidates:

- 1) The question paper has Two Parts, Part A and Part B
- 2) Answer Both the Parts.

PART - A

Answer any **TEN** of the following questions. Each question carries 2 marks: $(10 \times 2 = 20)$

 $(h = 6.626 \times 10^{-34} \text{JS}, c = 3 \times 10^8 \text{ms}^{-1}, m_e = 9.11 \times 10^{-31} \text{kg})$

- 1. How can you justify the quantisation of energy for a particle in one dimensional box? (2)
 - 2. What is the commutator of the two operators A and B? What is its value when the operators commute? (2)
 - 3. An electron is confined to an infinite one dimensional box of length 4×10^{-10} m. Calculate its energy in the fourth energy level. (2)
 - Write the expression for the angular and radial wave functions for hydrogen like particles.
 - 5. Write expression for ψ_{MO} and ψ_{+MO} for H_2^+ ion according to LCAO method.
 - (2)
 - 6. Write any two postulates of Molecular orbital theory. (2)
 - How many signals are observed in the PMR spectrum of ethyl alcohol? Indicate their multiplicity.
 - 8. Calculate the ESR frequency in a magnetic field of 3.5 T. Given g=2 and $\mu_B=9.273\times 10^{-24} JT^{-1}$. (2)

Q.P. Code - 42536

- 9. Why N₂ molecule does not exhibit rotational spectrum but NO exhibit? (2)
- 10. What are
 - (a) fundamental bands and
 - (b) hot bands. (2)
- What happens to the quantum yield of photosynthesis of HCl, if the vessel contains traces of oxygen. Explain with reason.
- 12. Calculate the value of Einstein corresponding to a radiation of wavelength 300 nm. (2)

PART - B

Answer any **SEVEN** of the following questions. Each question carries 10 marks: (7 × 10 = 70)

- 13. (a) Derive Schrodinger wave equation based on the postulates of quantum mechanics.
- sate of (b) Let $\hat{A} = 4x^2$ and $\hat{B} = \frac{d}{dx}$ and $f(x) = \alpha x^3$. Find $\hat{A} \hat{B} f(x)$ and $\hat{B} \hat{A} f(x)$.

TONEANGA CO.

- (c) Give the expression for a wave function of a particle is one dimensional box. Convert it into a normalized wave function.

 (4 + 3 + 3)
- 14. (a) Derive Heisenberg's uncertainty principle from the expectation values of x, x^2 , p_x and p_x^2 .
 - (b) If \hat{A} and \hat{B} are two operators such that $[\hat{A} \hat{B}] = 1$, show that $[\hat{A} \hat{B}] = 2 \hat{B}$.
 - (c) Show that the square of the angular momentum (L²) and its z-component (Lz) commute with each other. (Given -

$$[\hat{L}_x^2, \hat{L}_z]$$
 = its $(L_x L_y + L_y L_x)$ and

$$[\hat{L}_y^2, \hat{L}_z]$$
 = its $(L_x L_y + L_y L_x)$ and

$$[L_{2}^{2}, L_{2}] = 0$$
 (4 + 3 + 3

- 15. (a) Solve the Schrödinger wave equation of a simple harmonic oscillator for θ (Theta) equation.
 - (b) What is degeneracy? Calculate the degeneracy of the energy level with energy equal to 14h²/8ma².
 - (c) Show that the function $\cos ax$ is an eigen function of $\frac{d^2}{dx^2}$. Find the corresponding eigen value. (4 + 3 + 3)
- 16. (a) Sketch the molecular orbital diagram of LiH molecule. Calculate it s bond order.
 - (b) Using LCA₀ approximation, write down the complete wave function for a heteronuclear diatomic molecule AB assuming that it has 85% covalent character and 15% conic character.
 - (c) Compare the main features of the valence bond theory with that of the molecular orbital theory. (4 + 3 + 3)
- 17. (a) Explain the mechanism of photochemical dissociation of HI.
 - (b) Derive the expression for the operator $\left(\frac{d}{dx}x\right)^2$.
 - (c) What is Zero point energy? What does it signify? (4 + 3 + 3)
- 18. (a) State the following with reference to rotational spectra
 - (i) energy expression
 - (ii) region of appearance
 - (iii) criterion
 - (iv) selection rule.
 - (b) The separation of rotational spectral lines occurred at 332 m $^{-1}$ for NO molecule. Calculate internuclear distance. (Given, $\mu_{\rm NO} = 1.24 \times 10^{-26} \, {\rm kg}$; h = $6.626 \times 10^{-34} \, {\rm JS}$).
- (c) Mention any three applications of rotational spectra. (4 + 3 + 3)
 - (a) Show that pure vibrational spectra consists of a single line of same frequency.
 - (b) Vibrational rotational spectrum of HBr shows an absorption band centred at $2.652 \times 10^5 \, \text{m}^{-1}$. Calculate the force constant and Zero point energy. (Given $\mu = 1.653 \times 10^{-27} \, \text{kg}$, $h = 6.627 \times 10^{-34} \, \text{JS}$, $c = 3 \times 10^8 \, \text{ms}^{-1}$.

Q.P. Code - 42536

- (c) Calculate the total number of modes of vibrations for
 - (i) CO2 and
 - (ii) H2O molecules.

Indicate how many of them are IR active.

(4 + 3 + 3)

- 20. (a) Discuss the origin of Raman spectra. Explain the terms
 - (i) Rayliegh lines
 - (ii) Stokes lines.
 - (b) State mutual exclusion rule. What are antistokes lines?
- (c) State Franck-condon principle. What are singlet and triplet states?
 - 21. (a) Explain fine splitting of proton NMR spectra in
 - (i) CICH2 CH2 I and
 - (iii) CH3CHO.
 - (b) Give the hyperfine splitting of ESR spectrum of methyl radical (•CH₃).
 - (c) What is chemical shift? What are the scales used to measure it? How are they related? (4 + 3 + 3)
 - 22. (a) Derive Beer-Lambert's law. What are its limitations?
 - (b) A substance absorbs 2.6×10^6 quanta of radiation per second. 0.002 mol of substance undergoes chemical reaction in 1200 S. Calculate quantum efficiency.
 - (c) What is photosensitization? Explain with an example. (4 + 3 + 3)